Search results for "aluminium fluoride"

showing 1 items of 1 documents

Structural insights into the GTPase domain of Escherichia coli MnmE protein

2007

The Escherichia coli MnmE protein is a 50-kDa multidomain GTPase involved in tRNA modification. Its homologues in eukaryotes are crucial for mitochondrial respiration and, thus, it is thought that the human protein might be involved in mitochondrial diseases. Unlike Ras, MnmE shows a high intrinsic GTPase activity and requires effective GTP hydrolysis, and not simply GTP binding, to be functionally active. The isolated MnmE G-domain (165 residues) conserves the GTPase activity of the entire protein, suggesting that it contains the catalytic residues for GTP hydrolysis. To explore the GTP hydrolysis mechanism of MnmE, we analyzed the effect of low pH on binding and hydrolysis of GTP, as well…

Models MolecularTRNA modificationMagnetic Resonance SpectroscopyGTP'aluminium fluoridehomology modelingMolecular Sequence DataGTPaseGuanosine triphosphateGuanosine DiphosphateBiochemistryeraGTP Phosphohydrolaseschemistry.chemical_compoundStructural BiologyEscherichia coliAmino Acid SequenceHomology modelingBinding siteGTPaseMolecular BiologyBinding SitesSequence Homology Amino AcidChemistryEscherichia coli ProteinsTrmENMRRecombinant ProteinsKineticsBiochemistryMnmEGuanosine diphosphateRap2AGTP PhosphohydrolasesGuanosine TriphosphateSequence AlignmentRasProteins: Structure, Function, and Bioinformatics
researchProduct